

Angle and Points

 An angle is a figure formed by two rays with a common endpoint, called the ______.

Points A, B and C are on the angle. D is in the _____and E is in the

_____·

Measurement of Angles

Naming an Angle

2

Naming the measurement of an angle

Terms to Know

Full Turn → 360° Half Turn → 180° ¼ Turn → 90° 1/8 Turn → 45°

WRITING YOUR DEFINITIONS

- 1) Precise
- 2) Avoid ambiguous terms (some, about, small...)
- 3) Make sure can't make a counterexample of the definition

Defining...

1.* Define right angle.

Right angles

Defining...

2.* Define acute angle.

Acute angles

4
89°

Defining...

3. Define obtuse angle.

Defining...

5. Define angle bisector.

Ray *CD*, ray *OF*, and ray *MN* are angle bisectors.

Not angle bisectors

Ray GE and ray RP are not angle bisectors.

Adding Angles

When you want to add angles, use the notation $m\angle 1$, meaning the measure of $\angle 1$.

If you add $m \angle 1 + m \angle 2$, what is your result?

 $m\angle 1 + m\angle 2 =$ _____also.

Therefore, _____

Angle Addition Postulate

The _____ of the two _____ will always equal the measure of the _____ .

 $m \angle \underline{\hspace{1cm}} + m \angle \underline{\hspace{1cm}} = m \angle \underline{\hspace{1cm}}$

